HDTV over **IP**

University of Southern California Information Sciences Institute

About ISI

- Part of USC School of Engineering
- Main site in Marina del Rey, Los Angeles
- East coast site in Arlington, VA
- Approximately 300 staff
- Funding from DARPA, NSF, industry

- Internet core technology
 - Routing, DNS
- High speed networking
 - TCP performance
 - Network monitoring
 - IP security
- Networked multimedia
 - Digital Amphitheatre
 - HDTV over IP
- Sensor networks and adaptive computing

HDTV over **IP**

- Goal of our multimedia work is scaling:
 - To large group conferences
 - To very high quality
- Led us to choose delivery of uncompressed HDTV over IP as a target application
- Two directions:
 - Custom hardware solution in conjunction with Tektronix
 - PC-based solution developed at ISI

- Desire interactive real-time, so use RTP over UDP/IP
 - Work from standards for media streaming and teleconferencing
 - Evaluate their use at high rates
 - Design payload formats for HD
 - Proof of concept implementation

Custom Implementation

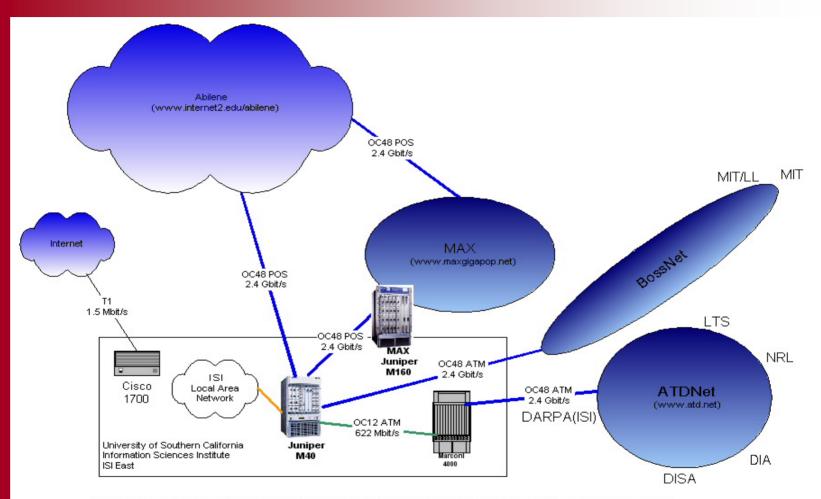
- RTP payload format designed by ISI and Tektronix
 - Designed to interoperate with existing equipment
 - Limited flexibility and robustness
 - Assumes a perfect network
- Implementation by Tektronix
 - One-off custom hardware
 - OC-48 network interface
 - SMPTF-292 HDTV interface
 - Full HDTV support @ 1.5 Gbps
- Tested across Internet2 between University of Washington and ISI Fast

PC-based Implementation

- Transmitter and receiver on separate host PCs
 - Dell PowerEdge 2500 servers
 - 1.2GHz PIII Xeon/Dual 64 bit PCI
 - Linux 2.4
- Gigabit Ethernet
 - Sub-sampled colour ⇒ 850 Mbps
- HDTV video capture card and camera
 - DVS HDstation OEM card

- All hardware needed is commercially available
- Custom software client available for download from ISI East

PC-based Implementation

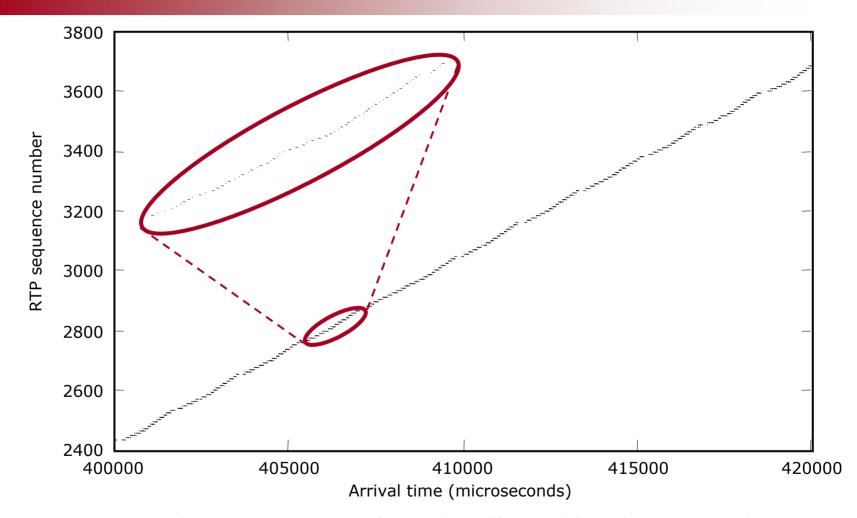

- Application logic implemented in software
 - Fragmentation and reassembly
 - Network adaptation
- Does not assume the network is reliable
 - Standard IP service
 - No QoS/resource reservation
- Tolerant to jitter and packet reordering
- Tolerant to some loss
 - FEC desirable

Status:

- Prototype code is stable
- Standard RTP payload format under development
- Demonstrated at SC '01 and SC'02
- Ongoing development:
 - NSF support to continue development
 - Robustness and adaptability
 - Congestion control
 - Usability

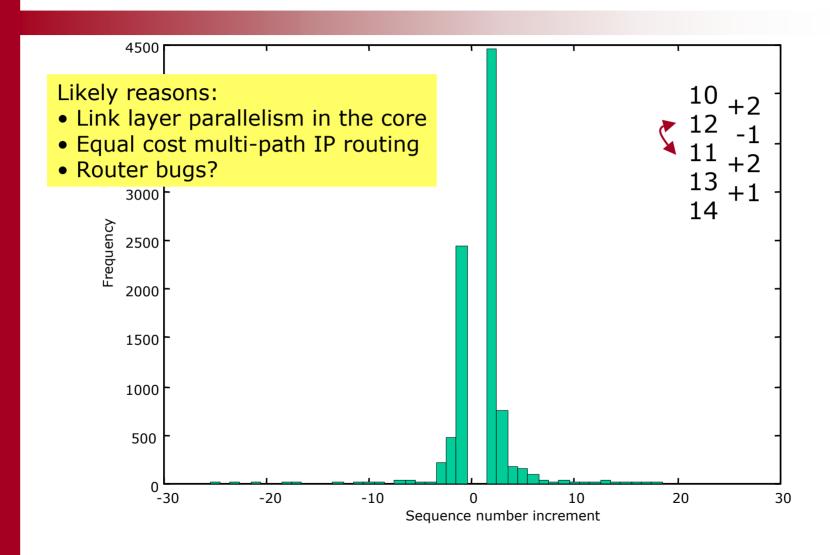
Wide area tests

- -BossNet Optically Transparent Long-Haul network. WDM network with one lambda for OC48.
- **-ATDNet** High performance networking testbed in the Washington D.C. area which is a collaboration between DARPA, DISA, DIA, NRL, NASA, and LTS. Dark fiber WDM network with one lambda for OC48 ATM.
- **-MAX**. Washington area gigapop founded by University of Maryland, Georgetown University, George Washington University, and Virginia Polytechnic Institute and State University.
- -Abilene. Internet2 high speed backbone for connecting Internet2 Universities.


Packet Loss

- When the path is adequately provisioned, loss is rare
 - Numbers below are for a bad day
 - Typically zero packet loss in the core at 850Mbps
 - FEC can correct these errors with minimal overheads
- We believe this is typical for major ISP backbone networks
 - Problems due to access networks/interconnects/hosts
 - Difficulty will be getting a commitment to quality

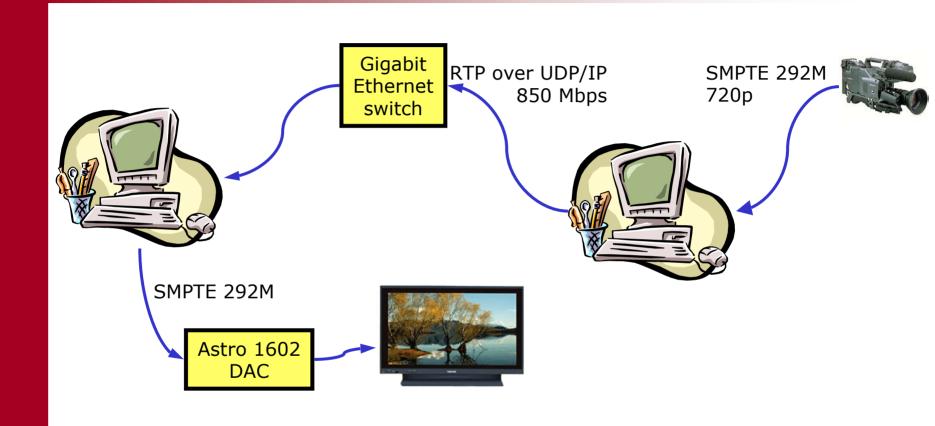
Loss event duration	Frequency
No loss	24697400
Single packet	85797
Two consecutive packets	587
Three consecutive packets	7
Four or more packets	0


Packet Timing Variation

- Inter-arrival times not significantly affected by the network
- Observed >99.9% of packets in order, with negligible jitter

Packet Reordering

- Packets are occasionally reordered in the network
 - (above data is from a 10 million packet trace)


Summary of Network Performance

- Backbone networks can support high rate UDP streams
 - Our data is from Qwest and Internet2
 - Have seen similar numbers from AT&T and Sprint
- Need a somewhat smart application
 - Some tolerance to loss,
 jitter and reordering

- Difficult problems are:
 - Engineering the edge network and interconnects
 - Persuading the ISP to give service guarantees

Today's Demonstration

- Local area test running at 850 Mbps
- PCs are dual-processor Dell PowerEdge 2500 servers with gigabit Ethernet and HDstation OEM capture/display cards
- SMPTE-292M input and output

