Congestion Control for High Performance Networked Multimedia

Colin Perkins

http://csperkins.org/

Talk Outline

- Background
 - Real-time networked multimedia
 - Congestion control in IP networks
- Challenges deploying congestion control
 - Due to the media
 - Due to the congestion control
- Initial experiments
- Future directions
 - Research
 - Standardisation

Real-time Networked Multimedia

MPEG-TS

ISDN

ATM

IP

Real-time Networked Multimedia

Real-time Networked Multimedia

RTP: Real-time Transport Protocol

- The standard for real-time transport over IP networks
 - Video conferencing
 - Voice over IP/telephony
 - Streaming audio and video
- Published as an IETF "draft standard" RFC
 - RFCs 3550 and 3551 in July 2003 updating earlier RFCs
 - Widespread use on conferencing
 - Adopted by ITU as part of H.323
 - Mbone tools; AccessGrid
 - Apple iChat; Windows Messenger
 - Adopted by 3GPP for next generation cellular telephony
 - Some use in streaming
 - QuickTime, Real, Microsoft
 - (competing with installed base of HTTP streaming; firewalls)

RTP: Real-time Transport Protocol

- RTP delivers a single media stream from sender to one, or more, receivers
 - Provides:
 - Participant identification
 - Reception quality statistics
 - Codec identification
 - Media transport
 - Padding, if necessary
 - Marking of significant events
 - Sequencing
 - Timing recovery
- Typically implemented in an application or as a library
 - User level, not part of the kernel
- Few assumptions about the underlying transport
 - Datagram service; not necessarily reliable or ordered
 - Usually runs over UDP/IP

Philosophy of RTP

- The challenge:
 - build a mechanism for robust, real-time media delivery above an unreliable and unpredictable transport layer
 - without changing the transport layer

Philosophy of RTP

- Implication: smart, network-aware, applications that are capable of reacting to problems end-to-end
 - Both sender and receiver are intelligent
 - The network is dumb and can be unreliable
- Fits well with the best-effort IP service
 - Applications handle reliability and congestion control
 - Doesn't require QoS support or congestion control in the network
- Contrast with traditional applications:
 - Telephone network is smart, end-points are dumb
 - MPEG sender is smart, receiver relatively dumb

Mapping RTP onto UDP/IP

- An IP network provides:
 - Best effort packet delivery with no admission control
 - Packets are discarded at intermediate routers if the output links are congested
- Layers above IP are expected to react to packet loss:
 - As a signal to perform some loss recovery algorithm
 - Retransmission
 - Forward error correction
 - Loss tolerance
 - As a signal to reduce their sending rate
 - TCP/IP has a standard algorithm
 - Multimedia traffic, using RTP on UDP/IP, does not

Why Congestion Control?

- Important to devise congestion control for multimedia:
 - For very high quality, need to fit the capacity of the pipe
 - Applications can be bandwidth hungry
 - For widespread deployment, need to ensure that the aggregate traffic is adaptive to capacity changes
 - To avoid congestion collapse
- In all cases, need to ensure that the media quality isn't affected by the adaptation

TCP Congestion Control

- Most traffic is TCP/IP
 - Additive increase/multiplicative decrease
 - Linear probe of available capacity until momentary overload
 - Multiplicative back-off to safe sending rate
 - Ensures capacity is used, avoids network overload
 - Approximately equal share of bottleneck capacity between flows

TCP Congestion Control

- Works well for elastic applications
 - In particular, long lived bulk transfers
- Bad for multimedia because...
 - Rate is highly variable, and profile doesn't match multimedia traffic
 - Couples congestion control with reliability
 - ⇒ Streaming audio/video over HTTP sub-optimal

Multimedia and Fairness

- Implication: multimedia flows need a different sort of congestion control
- But, the network constrains possible solutions:

- Want non-TCP traffic to be *TCP-friendly*
 - Compete fairly with TCP on average
 - But different dynamics and reliability modes
 - Assert priority with QoS mechanisms, if desired

How to be TCP-Friendly?

Derive a mathematical model of average TCP throughput Use that to drive congestion control

Current best model due to *Padhye et al.* [SIGCOMM '98]:

$$T = \frac{s}{R\sqrt{\frac{2p}{3}} + 3p(1 + 32p^2) \cdot T_{rto}\sqrt{\frac{3p}{8}}}$$

Assumptions:

- Saturated steady state TCP sender
- TCP Reno
- Packet loss correlated within sending window, uncorrelated long term
- Packet reordering rare

TFRC Protocol

- Padhye's throughput model forms the basis of a standard congestion control protocol: **TFRC** [RFC 3448]
 - Embed the throughput equation into an ACK-based feedback protocol
 - Rules for derivation of loss event rate from packet loss history
 - Slow start; damping to avoid oscillation

Comparison of TCP and TFRC

TFRC:

- Smoother, approximately matches average TCP rate
- Decouples congestion control from reliability

TCP:

- Faster adaptation to changes in capacity

Deployment Challenges

- Claim in IETF community is that TFRC is appropriate for multimedia flows
- Not widely tested, especially for interactive use:
 - TCP friendly algorithms are new, and evolving
 - Do the assumptions of network performance hold?
 - TCP variant, loss patterns, jitter, reordering
 - Do the assumptions match the needs of the application?
 - Interactions between codec and network are not well defined
 - Unclear how slow response, limited adaptability, impact fairness
 - Human factors aspects play a key role
 - Congestion control implies variable quality
 - Subjectively very annoying, unless the rate of change is slow
 - Can have a significant impact on congestion control
 - How can we build systems using this framework?
 - How to integrate into RTP? New protocols?
- Build a prototype, to find out if it works...

HDTV over IP Demonstrator

- Develop a very high quality teleconferencing system:
 - High Definition TV (HDTV)
 - 1280x720 @ 60Hz
 - Gigabit Ethernet
 - Wide-area OC-48 networks
 - High performance PCs
- Several aims:
 - Demonstrate high quality media over IP networks
 - Demonstrate operation of TFRC congestion control
 - Test if TFRC network performance assumptions realistic
 - Test human factors of media adaptation
 - Demonstrate scalability of the protocols

HDTV over IP Demonstrator

- Transmitter and receiver hosted on separate PCs
 - Dell PowerEdge 2500 servers
 - 1.2GHz PIII Xeon/Dual 64 bit PCI
 - Linux 2.4
- Gigabit Ethernet
 - Sub-sampled colour \Rightarrow 850 Mbps
- HDTV video capture card
 - DVS HDstation OEM
- Philips LDK-6000 HDTV Camera

- The combination makes
 HDTV grabbing and
 transport feasible on
 commodity hardware
 - Linux PC + HDTV grabber
 - Approximately \$20k + HDTV camera and display
- Software available for download

Test Environment

- System tested between ISI sites in Washington DC and Los Angeles
 - Early demonstration at SuperComputing 2002
- HSCC is a DARPA tested, routed on a commercial ISP's IP backbone
 - OC-48 shared with commercial IP traffic; no QoS support

Test Environment

- Optical splitter on gigabit Ethernet for traffic monitoring
- Monitoring host is a FreeBSD system
 - Dual gigabit Ethernet with only Rx connected
 - Capture packet headers to memory at line rate
 - Careful tuning to avoid discards

Measurements

- Capture packet traces from cross-country HDTV tests
 - Plus synthetic packet generator in some cases
 - Some fixed rate, some using TFRC
- Measure:
 - Packet loss
 - Timing variation/jitter
 - Reordering
 - Duplication
 - Linux will duplicate; wide area network doesn't seem to...

Packet Loss Rates

Loss event duration	Frequency	
No loss	24697400	
Single packet	85797	(0.3%)
Two consecutive packets	587	(0.002%)
Three consecutive packets	7	(0.00003%)
Four or more packets	0	

- Cross country path: DC to LA
- When the path is adequately provisioned, loss is rare
 - Data above is worst-case
 - Many hour-long traces with no loss
- We believe this is typical for major ISP backbone networks
 - Problems due to access networks/interconnects/hosts

Packet Loss Rates

- Padhye equation models TCP Reno and assumes loss within window is correlated
 - Lose one, lose remainder of window
- Measurements do not show this behaviour in network
 - Losses are isolated events when window is large
 - TCP Reno is pessimistic
- \Rightarrow TFRC also pessimistic
 - Better to model SACK TCP

Packet Timing Variation

• Observed >99.9% of packets in order, with negligible jitter

Packet Reordering

- Packets are occasionally reordered in the network
 - (above data is from a 10 million packet trace)
- Significant effects on congestion control, even though all packets arrive

Copyright © 2004 Colin Perkins

Packet Reordering

Path	Size	Metric	100Mbs	200Mbs	300Mbs	400Mbs	500Mbs	600Mbs	700Mbs	800Mbs	900Mbs
LA→DC	500	M 1% M 2% M 3 (events) Loss (packets)		0.07 0.13 0 0	0.45 0.90 0 0	1.26 2.53 0 0	N/A	N/A	N/A	N/A	N/A
	1500	M 1% M 2% M 3 (events) Loss (packets)			- - -			0.01 0.02 0 0	0.02 0.04 0 0	0.05 0.10 0	N/A
	4500	M 1% M 2% M 3 (events) Loss (packets)									-
DC→LA	500	M 1% M 2% M 3 (events) Loss (packets)	0.05 0.09 15 0	0.16 0.30 191 0	0.81 1.61 783 0	N/A	N/A	N/A	N/A	N/A	N/A
	1500	M 1% M 2% M 3 (events) Loss (packets)	0 0.01 0 0	0.01 0.02 0 0	0.03 0.06 2 0	0.06 0.12 21 0	0.12 0.23 88 0	0.38 0.71 3299 0	0.55 1.10 1049 0	N/A	N/A
	4500	M 1% M 2% M 3 (events) Loss (packets)		-			0 0.01 0 0	0.01 0.02 0 0	0.02 0.05 0	0.06 0.12 4 0	0.13 0.26 12 0

- Reordering strongly dependent on inter-packet spacing
- Caused by:
 - router bugs; link layer multi-path; etc.

Packet Reordering

• Reordering by >3 is treated as loss by TCP:

- TFRC follows TCP, and treats some reordering as loss
- Observed traces where *all* packets were received, but TFRC suggested throughput order-of-magnitude less than achieved
 Due to reordering being treated as loss!
 - Due to reordering being treated as loss!
- Media decoding is generally tolerant of reordering
- Reordering robust TFRC desirable
 - But has implications for fairness

Summary of Congestion Control Results

- Packet loss is mostly isolated or short burst
 - TCP Reno under-performs \Rightarrow TFRC under-performs
- Timing mostly well behaved
- Small amount of reordering has disproportionate effect
 ⇒ Reordering tolerant TFRC needed (Fairness?)

- ⇒ Most significant effect on TFRC observed: reordering at high rates
- ⇒ Network assumptions of TFRC justified at low-rate; not at high rate
- \Rightarrow (Implementation ongoing to study quality variation issues)

Future Research Directions

- Clear that TFRC brings undesirable influences from TCP
- Can evolve TCP-Friendly congestion control in several directions:
 - Evolve response to network effects
 - Tolerance to reordering at high speeds
 - Evolve response to TCP variants
 - Reno vs SACK
 - Some applications fall into the realm of HS-TCP; FAST-TCP; etc
 - Evolve awareness to needs of media
 - Dealing with bursty codecs; network queuing capacity
 - Limited codec adaptability; slow response; ad-hoc TFRC-changes
- Must consider how we affect other traffic as we do so
 - Difficult fairness questions relating to TCP traffic
- How do we scale to multicast/multiparty?

Future Standards Development

- Datagram Congestion Control Protocol
 - http://www.icir.org/kohler/dcp/
 - "Congestion controlled UDP"; implement in operating system
 - Incorporates several congestion control algorithms
 - TCP-like
 - TFRC
 - (more can be added later)
 - Possible long-term solution; difficult to deploy
- Directly incorporate TFRC into RTP
 - RTCP extensions to provide feedback
 - Short-term solution; implement in applications/libraries to allow experimentation; simple to deploy
- TFRC itself is controversial
 - Disconnect between codec designers and protocol designers

Summary

- Background
 - Real-time networked multimedia
 - Congestion control in IP networks
- Challenges deploying congestion control
 - Due to the media
 - Due to the congestion control
- Initial experiments
- Future directions
 - Research
 - Standardisation

Questions?

