Putting the "Ultra" in UltraGrid: Full rate Uncompressed HDTV Video Conferencing

Ladan Gharai	University of Southern California/ISI
Colin Perkins	University of Glasgow
Alvaro Saurin	University of Glasgow

Outline

- The UltraGrid System
- Beyond 1 Gbps
- Experimentation
 - → Lab Experiments
 - → Network Experiments
- Summary

The UltraGrid System

- UltraGrid is ultra-high quality video conferencing tool
 - → Supports uncompressed High Definition TV video formats
 - → Video codecs: Digital Video (DV)
 - → Incurs minimum latency
 - Adaptable to network conditions
- Not solely a video conferencing tool:
 - → HDTV distribution system for editing purposes
 - → A general purpose SMPTE292M-over-IP system
 - → High-definition visualization and remote steering applications

Approach

- Build a system that can be replicated and built by other HDTV enthusiasts:
 - → Use hardware that is commercially available
 - → All audio and video codecs are open source
 - → Use standard protocols:
 - Real-time Transport Protocol (RTP)
 - Custom payload formats and profiles where necessary
 - → Software available for download

Outline

- The UltraGrid System
- Beyond 1 Gbps
- Experimentation
 - → Lab Experiments
 - Network Experiments
- Summary

Beyond 1 Gbps

- We have previously successfully demonstrated UltraGrid at ~1Gbps
 - → Supercomputing 2002
 - → Video is down sampled at the sender:
 - Color is down sampled from 10bits to 8bits
 - Auxiliary data removed
- Why < 1 Gbps limitation?</p>
 - → limitation is the Gigabit Ethernet NIC
- Solutions:
 - 1. 2 Gigabit Ethernet NICs
 - 2. 10 Gigabit Ethernet NIC

The (new) UltraGrid node

- 10 Gigabit Ethernet NIC:
 - → T110 10GbE from Chelsio: <u>http://www.chelsio.com/</u>
 - → 133Mhz/PCI-X

The (new) UltraGrid node

- 10 Gigabit Ethernet NIC:
 - → T110 10GbE from Chelsio: <u>http://www.chelsio.com/</u>
 - → 133Mhz/PCI-X
- HDTV capture card:
 - → Centaurus HDTV capture card from <u>www.dvs.de</u>
 - same SDK as HDstation
 - 100Mhz/PCI-X

The (new) UltraGrid node

- 10 Gigabit Ethernet NIC:
 - → T110 10GbE from Chelsio: <u>http://www.chelsio.com/</u>
 - → 133Mhz/PCI-X
- HDTV capture card:
 - → Centaurus HDTV capture card from <u>www.dvs.de</u>
 - same SDK as HDstation
 - 100Mhz/PCI-X
- Dual Xeon EM64T Power Station
 - → SuperMicro mother board
 - → 5 programmable PCI-X slots
 - → 32bit Fedora Core3 Linux 2.6 Kernel

UltraGrid: Architectural Overview

UltraGrid Node

An open and flexible architecture with "plug-in" support for codecs and transport protocols:

- Codec Support:
 - → DV, RFC 3189
 - → M-JPEG, RFC 2435
 - → H.261, RFC 2032
- Transport protocols:
 - → RTP/RTCP
 - → RFC 3550
- Congestion Control:
 - → TCP Friendly Rate Control (TFRC), RFC 3448

UltraGrid: Architectural Overview

Software modifications

- Both capture cards operate in 10bit or 8bit mode
- Update code to operate in 10bit mode
 - → packetization must operate in 10bit mode
 - → packetization is based on draft-ietf-avt-uncomp-video-06.txt
 - Supports range of formats including standard & high definition video
 - Interlaced and progressive
 - RGB, RGBA, BGR, BGRA, YUV
 - Various color sub-sampling: 4:4:4, 4:2:2, 4:2:0, 4:1:1

Outline

- The UltraGrid System
- Beyond 1 Gbps
- Experimentation
 - Lab Experiments
 - Network Experiments
- Summary

Experimentation

- 1. Lab Tests
 - → Back to back
- 2. Network Tests
 - → The DRAGON Metropolitan Area Network

Measured:

- → Throughput
- → Packet loss and reordering
- → Frame inter-display times
- → Packet interarrival times at sender and receiver
 - Measured on a subset of 50000 packets

Lab Tests

Lab Tests

Back-2-back tests:

- → Duration: 10 min
- → RTT: 70 µs
- → MTU: 8800 bytes

Lab Tests

Back-2-back tests:

- → Duration: 10 min
- → RTT: 70 µs
- → MTU: 8800 bytes

Results:

- → No loss or reordering
- → 1198.03 Mbps throughput
- Total 10,178,098 packets sent and received

Inter-packet Intervals: Sender vs. Receiver

Inter-packet Intervals: Sender vs. Receiver

Frame inter-display times

- At 60 fps frames are displayed with an inter-display time of 16666 µs
- The Linux scheduler interferes with timing in some instances:
 - → This is an OS scheduling issue
 - → One solution is to change granularity of scheduler to 1 ms

Network Tests

- Network tests were conducted over a metropolitan network in the Washington D.C. area, known as the DRAGON network.
- DRAGON is a GMPLS based multiservice WDM network and provides transport at multiple network layers including layer3, layer2 and below.
- DRAGON allows the dynamic creation of "Application Specific Topologies" in direct response to application requirements.
- Our Ultragrid testing was conducted over the DRAGON metropolitan ethernet service connecting:
 - University of Southern California Information Sciences Institute (USC/ISI) East (Arlington, Virginia); and
 - University of Maryland (UMD) Mid-Atlantic Crossroads (MAX) in College Park, Maryland.

UltraGrid over DRAGON Network

UltraGrid over DRAGON Network

UltraGrid over DRAGON Network

Network tests:

- → Duration: 10 min
- → RTT: 570 µs
- → MTU: 8800 bytes

Results:

- → No loss or reordering
- → 1198.03 Mbps throughput
- Total 10,178,119 packets sent and received

Inter-packet Intervals: Sender vs. Recevier

Inter-packet Intervals: Sender vs. Recevier

Frame inter-display times

- In the network tests we see the same interference from the Linux scheduler in the inter-display times of frames:
 - → This is an OS scheduling issue
 - → Solution: change granularity of scheduler to 1 ms/1000 Hz

Summary

- Full rate uncompressed HDTV video conferencing is available today, with current network and end-system technologies.
- Approximate cost UltraGrid nodes are:
 - Hardware: ~\$18000
 - Software: open source code
- It is paramount to be able to adapt to differing network technologies and conditions:
 - → Full rate 1.2Gbps flows on dedicated networks
 - → Network friendly flows on IP best effort networks

Further Information...

- UltraGrid project web-site: <u>http://ultragrid.east.isi.edu/</u>
 - → Latest UltraGrid release available for download
 - → UltraGrid-users mailing list subscription information
- Congestion control for media: <u>http://macc.east.isi.edu/</u>
 - → Version of Iperf+TFRC for UDP flows, available for download
- DRAGON network : <u>http://dragon.east.isi.edu/</u>

